Optimization Based Robot Control Assignmet 03

Alessandro Assirellli, mat. 231685
February 13, 2023

1 Introduction

Deep Q Network (DQN) is a reinforcement learning (RL) algorithm that is used to approximate the
optimal action-value function in RL problems. It was first proposed by Google DeepMind in a 2015
paper titled ”Human-level control through deep reinforcement learning”.

DQN can learn a control policy for an agent interacting with an environment. It is an extension
of the Q-learning algorithm, and it has been widely used in various RL tasks achieving impressive
performance in many domains, including playing Atari games and controlling robots. This algorithm
can be used when the state space of the system is huge or even continuous. Traditional Q-learning
cannot be implemented for these problems, since it is not physically possible to store Q in memory.
Contrary to Q-learning, which tries to fill a table containing (state, action, value) triples, DQN tries
to approximate the Q function with a nonlinear approximator (Neural Network). This imply that
DQN is able to generalize the action-value function Q even for states that have never been explored.

2 Algorithm

The basic idea behind DQN is to approximate the action-value function using a neural network,
which is trained to predict the expected future cost to go for each action, given the current state
of the environment. The optimal action-value function Q*(s,a) is defined as the minimum future
cost achievable by any policy starting from state s, after taking an action a. The Bellman equation
states that if the action-value function of the next state s’ is known for every possible action a’, then
the optimal strategy is to take the action ¢’ minimizing Q*(s’,a’):

Q" (s5,0) = c(s,a) + 7 min Q" (5,0 1)

While in traditional Q-learning this equation is directly used to compute an update for @, in DQN
at each iteration a neural network is trained to find the weights 6 that reduce the mean squared error
in the Bellman equation. To do so, the algorithm uses a technique called fixed Q-targets, which
involves using a separate target action-value function Q(s,a,&‘) to compute the targets for the
Bellman equation. The target action-value function is updated periodically to match the current
estimate of the action-value function, which helps to stabilize the training. Q(s,a,8) is updated
based on stochastic gradient descent, where the cost function and gradient are:

L(0) = E{[c(s, a) +’7H(1Li,nQ(slvaI70_) - Q(S,G,Q)F}

2
VoL(0) = E{[c(s,a) + 7 min Q(s',d',07) — Q(s,a,0)]VeQ(s, a,0)} ®
To stabilize the learning process, DQN also uses a technique called experience replay, which
involves storing transitions (state, action, cost, next state) in a replay memory and sampling mini-
batches of transitions used to train the Q network. This helps to decorrelate the transitions and
makes the learning process more stable.
Algorithm [I] reports the basic outline of the DQN training process. It consists of a loop over
a fixed number of episodes, each of which consists of a loop over a series of time steps. At each
time step, the algorithm selects an action using the current estimate of the action-value function
by following an epsilon-greedy policy, executes the action, and stores the resulting transition in the
replay memory. The algorithm then samples a mini-batch of transitions from the replay memory
and uses them to update the action-value function using gradient descent.

Algorithm 1 DQN Algorithm (N,K,M,C)

Initialize replay memory D to capacity N
Initialize action-value function @) with random weights 6
Initialize target action-value function Q with weights 6~ < 6
for episode < 0 to M do
Initialize state s
while episode is not ended do
Select action using an epsilon-greedy scheme
Execute action a; and observe cost ¢; and new state sy
Store transition (s, ag, ¢, S¢41) in replay memory D
if D > N then
Remove D,
end if
if t mod K = 0 then
Sample random mini-batch of transitions (s;, a;, ¢;, sj+1) from D
Set §; = cj(sj,a;) +yming, , Q(sj11,0a;41;07) — Q(s5,a;;0)
Perform a gradient descent step on J; with respect to 6
end if
end while
if episode mod C' = 0 then
Q<+ Q
end if
end for
return Q

The results of training a Deep Q-Network depend on several factors, including the environment,
the hyperparameters, and the quality of the experiences collected during training. In successful
training runs, @ typically converges over time to a stable solution.

The algorithm hyperparameters have been hand tuned and they are reported in Table

3 Environments

In a reinforcement learning problem, the environment is the system that the agent interacts with.
The environment is typically modeled as a Markov Decision Process (MDP), which consists of a set
of states, actions, and rewards or costs. The agent receives observations from the environment and
takes actions based on these observations. The environment transitions to a new state and provides a
cost to the agent based on the action taken. The goal of the agent is to learn a policy that minimizes
the cost to go, which is defined as: J = ZtT:o ~tci. The environment can be discrete or continuous
and stochastic or deterministic. The two environments under analysis are continuous in the state
and discrete in the control. They are both deterministic, since the transition function is provided
by the dynamics of the systems. Two different environments have been set, the first one (ENV1) is
a simple pendulum system, while the second one is a double pendulum (ENV2). ENV1 has a state
space of dimension two [0, 9], where theta is the angle between the pendulum and the vertical axis.
The control space is a discrete state space of dimension 51 corresponding to the 51 possible torque
values that the motor can apply. The torque values are linearly spaced between [—uMax,uMax].
Note that by selcting an even number of steps, the value corresponding to 0 torque is not among the

Hyperparameter ENV1 ENV2

Learning rate le-3 le-3
Batch size 128 128
Memory buffer legth (N) 100000 100000

Minimum buffer to train 10000 5000

Min exploration probability 0.0 0.0

Exploration probability decay le-4 2e-5
Target network update frequency (C) 10 10

Number of training episodes (M) 1000 2000
Number of step before train (K) 4 4

Table 1: Hyperparameters

possible choices, so an odd number must be used. uMax has been set to 2 [Nm]. The cost function
is shaped in order to provide zero cost if the pendulum at the current step is in an upright position
with zero velocity and zero torque:

¢ = 106 + 0.16% 4 0.01u> (3)

ENV2 has a state space of dimension four [91,92791,92], where 67 is the angle between the first
pendulum and the vertical axis, while 65 is the relative angle between the second pendulum and the
first one. The robot is underactuated (only first joint is actuated), the control space is discrete and
it consists of 201 possible torque values linearly spaced between [—uMax,uMaz]. uMax has been
set to 2[Nm]. The cost function is:

¢ = 1062 4 0.16% + 1062 + 0.162 + 0.01u> (4)

Which is zero when the robot is in its goal configuration.
Table [2] summarizes the environments setup.

ENV1 ENV2
Observation space Continuous (2) — [0, 6] Continuous (4) — [61, 62, 01, 03]
Control space Discrete (21) — [ug,...,us0] Discrete (201) — [uqg, .. ., u200]
Observation space lower bound [—7, —8§] [-7, —m, —10, —25]
Observation space upper bound [, 8] [m, 7, 10, 25]
Control Space values [—2,-1.92,...,1.92,2] [-2,-1.98,...,1.98,2]
Episode length 200 200

Table 2: Environments summary

4 Function approximators

In Deep Q-Network, a function approximator is used to estimate the state action-value function,
Q(s,a), representing the expected future reward for taking a specific action in a given state. There
are various types of function approximators that can be used in RL, including linear functions,
polynomial functions, and artificial neural networks (ANNs).

The use of a function approximator in DQN is motivated by the fact that the state-action-value
function can be too complex to be represented in a lookup table, and the analytical solution is
often not available. Function approximators, such as artificial neural networks (ANNs), can learn
to approximate complex functions and have the ability to generalize to new data. The structure
of the neural network used in DQN is designed to handle the specific requirements of the problem.
The network typically consists of multiple fully connected layers, with activation functions such as
rectified linear units (ReLU) used to introduce non-linearity into the model.

In order to find an optimal control policy for ENV1 and ENV2, ANNs have been used. The
ANN architectures are presented in Table [3] Both networks share the same input-output setting,

ENV1 ENV2
Layer Dense (32) Dense (64)
Activation ReLu ReLu
Layer Dense (32) Dense(128)
Activation ReLu ReLu
Layer Dense (dimaction) Dense(64)
Activation - ReLu
Layer - Dense (dimaction)

Table 3: Neural networks architecture

which consits of dimgiqte inputs and dimgction outputs. In this setting the NN receives as input the
state of the system, which is mapped to dimgction values, each of them representing the Q value for
that state, taking the action corresponding to the index of the node. The output of the network is
thus Q(s,a0), Q(s,a1), ..., Q(S, Gdimgerinn)- The greedy action is then obtained by just one forward
pass and selecting the action associated to the minimum Q).

Figure [1] shows an example of this setting in which a state space of dimension four is used, and
mapped to the five possible actions. Each output node contains the action-value Q(s, a;), which is
the value of taking the action a; in the state s. In this example the red bar indicates the value of
Q(s,a;). For this specific case ag is clearly the best action to take, since it is minimizing Q.

s € R*

Figure 1: Neural network setting

5 Results

The algorithm has been implemented for ENV1 and ENV2. In both cases the action space has been
discretized in dimgetion possible values. In Deep Q-Network algorithms, discretization of the action
space can have a significant impact on the training process and the final performance of the agent.
The number of discrete actions must be chosen carfully as it rules the expressivness of the final
model. When the discretization is performed on a coarse grid the computational cost decreases,
however a too grainy grid can result in a too coarse policy and lead to sub-optimal solutions, so
a trede-off must be found. The discretization of ENV1 and ENV2 has been hand tuned, and it is
described in Section [Bl

The training performance of the algorithm is typically measured in terms of the cost payed by
the agent in the environment it is trained on, or by loss function used to update the parameters of
the algorithm. In this case, the training performance is measured by the cost to go during training.
The reason is that, while the algorithm tries to learn Q(s, a), what we are really interested in, is the
optimal policy 7*(s). Because Q*(s, a) is only a proxy for 7*(s) it is possible that some improvement
in estimating Q*(s,a) does not correspond to an improvement in the estimate of 7*(s). At every
training step of the network, which occurs with a frequency C (in algorithm, the model changes, as
a stochastic gradient descent step is performed. In DQN there is no guarantee that the performances
improve as the training proceeds. In order to keep track of the best policy, the value function for
each policy is stored, then the weights of the model are saved every time a policy m(s) with lower
V7™ (s0) is found.

5.1 ENV1

Figure [2a] shows the average cost to go during training for ENV1. The average is computed con-
sidering 10 episodes. As can be seen, the average cost decreases until around 650 iterations, where

Double pendulum training Loss

00 —— cost_min —— loss
—— cost_max
—— cost_avg 05

Cost to go

0 200 400 600 80 1000 0 200 400 600 80 1000

Step Step

(a) Cost to go (b) Loss

Figure 2: Training on ENV1

a plateau is reached. At this point the cost to go remains more or less constant, meaning that the
algorithm has reached convergence and it cannot learn more. Figure shows the mean squared
error of the estimated Q function with respect to the Q target. Also the loss function reaches a
plateau after around 650 iterations which confirms that after 650 iterations the Q value converged
to the Q target. The algorithm has been trained for 1000 iterations and took ~ 1600 seconds.

The optimal value function and optimal control policy can be retrieved as:

V*(s) = main Q*(s,a)
()

7*(s) = argmin Q* (s, a)

In order to plot V*(s) and 7*(s) as colormaps the two functions have been sampled on a square
grid 151X151, Figure [3] shows the results.

. Value
6 80
‘ 60
2 |
g ©
a 20
° 0
* -3 -2 -1 o 1 2 3 -3 -2 -1 o 1 2 3
q q
(a) Optimal value function (b) Optimal policy

Figure 3: Optimal value and policy functions

As can be seen the Value function present, with good approximation, an odd symmetry. This
is reasonable, since the cost to go by starting rotating clockwise should be the same as starting
counterclockwise and then behave oppositely. Also the optimal control policy presents a certain
level of symmetry. In Figure it is possible to recognize color blocks, whose distribution is fairly
symmetric. The differences are the shades inside each block. The reason why shades are not that
symmetric can be, as previously discussed, due to the fact that the algorithm is not trying to
find directly 7*(s), which would have been symmetric, but it finds it through an approximation of
Q" (s, a).

Figure [4] shows the simulation results of the pendulum swing up.

Position Velocitiy Torque

— theta — d_theta thrpue

angle [rad]
angular velocity [rad/s]

4 s 4 s s w o
time [s] time [s] time [s]

(a) Position (b) Velocity (¢) Torque

Figure 4: Simulation of ENV1

5.2 ENV 2

As previously discussed, this environment consist of an underactuated double pendulum which has
to perform a swing up maneuver. Figure [a] shows the cost to go during training.

Double pendulum training Loss

—— cost_min
—— cost_max 0.010
—— cost_avg

— loss

200

0.008

&
8

0.006

Costto go

8
3

Loss

0.004

0.002

0.000 J

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000

Step Step

(a) Cost to go (b) Loss

1250 1500 1750 2000

Figure 5: Training results

The average is computed considering 10 episodes. As can be seen, the cost decreases up to
around 1250 iterations, where a plateau is reached. Also in this case the algorithm converged to the
optimal action value function, as the mean squared error between the estimated Q and the Q target
converges after around 1000 iteration. The algorithm has been trained for 2000 episodes and took ==
5500 seconds. Figure [f] shows the simulation results of the double pendulum swing up problem. As
can be seen, the controller reaches very good accuracy in performing the task. The applied torque,
after the first phase of swing, continues to jump between positive and negative values. The reason
is that being the torque discrete, the agent doesn’t have the freedom to select any torque value.
Because of that, the available torque levels may not be fine enough to end up with 0 control torque.
Overall the system performs really well and constantly applying positive and negative torque it’s
certainly the best thing the algorithm can do to stabilize the system.

Position Velocities Torque

—— d_theta_1 = —— torque
—— d_theta_2

5 &

angle [rad]
angular velocity [rad/s]

Torque [Nm]

[

Lo

15 20 2
time [s]

15 20 25 B owow
time [s] time [s]

(a) Positions (b) Velocities (¢) Torque

Figure 6: Simulation of ENV2

6 Additional work

The DQN algorithm described in this report succeeded in controlling both the environments, as pre-
sented in Section o} Over the years researchers have found many different techniques to improve the
learning performances of DQN. An interesting solution which has not been tested, is the prioritized
experience replay scheme, in which transitions with a high TD error are presented more frequently
to the algorithm. The idea is that the agent can learn more from some transitions than from others.
Some transitions may be surprising, while other redundant. Prioritized experience reply tries to
speed up the learning by presenting less often the transitions that add little to the learning.

There are other possible solutions such as Duelling Network, Noisy Net and Actor Critic schemes
which have not been tested.

I find quite attractive the idea behind Duelling Network, and it would have been interesting to
see if it improves the learning performances in these two environments. Duelling Network is intended
to facilitate the learning when there are states for which whatever action is taken, the cost would be
very similar. In those cases there is no need to learn the value for every action. While I understand
the advantages of this scheme in some environments, as the Enduro example provided by by Ziyu
Wang et al. in ”Dueling Network Architectures for Deep Reinforcement Learning”, it does not seem
obvious to me that it should lead to better performanecs in the two environments under analysis.

	Introduction
	Algorithm
	Environments
	Function approximators
	Results
	ENV 1
	ENV 2

	Additional work

