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Cooperative navigation for efficient trucks
platooning
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Abstract—This project aims to enhance the efficiency of a
trucks fleet operating in a highway. The fleet comprises trucks
with diverse fuel consumption rates, and the leading vehicle
faces additional fuel consumption due to aerodynamic drag. The
improved efficiency is obtained by changing the fleet leader in
order to smartly split the effort among all the trucks. The project
is structured around four key points. Firstly, proposing the
implementation of Distributed Extended Kalman Filkter (DEKF)
for precise localization. Secondly, conducting the implementation
and analysis of Cooperative Adaptive Cruise Control (CACC)
to manage longitudinal dynamics. The third point concerns the
implementation an optimization strategy designed to maximize
overall fleet efficiency by rotating the leader position among the
vehicles. Lastly, an overtaking maneuver scheme is proposed to
accomplish the optimal schedule.

I. INTRODUCTION

The transportation sector faces growing pressure to reduce
its environmental footprint and improve safety. Autonomous
vehicles, equipped with advanced sensors, actuators, and com-
munication systems, offer a promising solution to address
these challenges. V2V communication, particularly, enables
vehicles to exchange information in real-time, enabling coor-
dinated and efficient driving.

Autonomous vehicles employ a suite of advanced technolo-
gies to operate independently. Sensors, such as cameras, radar,
and Lidar, provide real-time information about the vehicle’s
surroundings, including surrounding vehicles, road conditions,
and traffic signals. Actuators, including brakes, accelerators,
and steering systems, enable the vehicle to maneuver ac-
cordingly. V2V communication, allows vehicles to exchange
information about their position, speed, intentions, and other
relevant data.

Trucks, due to their size and weight, are particularly energy-
intensive vehicles. Aerodynamic drag plays a significant role
in fuel consumption, and the leading vehicle in a convoy
experiences increased drag. Distributing the leading position
among multiple trucks can significantly reduce the overall fuel
consumption of the fleet. A scheduling mechanism can be
implemented to assign the leading position to trucks based
on their current fuel consumption profiles, traffic conditions,
and remaining driving distance. This approach balances the
energy burden across the fleet. This approach of splitting the
hard work among different agent is the one used for example
by cyclist when racing. The leader makes the ride easier for
the other riders by experiencing an increased aerodynamics
drag and then, at some point the leader gets changed to let
him rest.

V2V also allows to exchange information about a vehicle’s
measurements which makes it attractive for the implemen-
tation of a distributed filter that reconstruct the geometry

of the trucks fleet. Such knowledge can be exploited when
performing overtaking maneuvers. When a vehicle overtakes
another it usually relies only on its measurements, but by
fusing them with the ones of the other vehicles a more
reliable maneuver can be realized. If the vehicles exchange
also informations about their speed intentions it is possible to
implement CACC to adapt the speeds of the other vehicles to
maintain a safe and efficient following distance. This coop-
erative control can reduce the frequency of accelerations and
decelerations, minimizing slinky effects and further improving
fuel efficiency. CACC allows trucks to form tight platoons, A
coordinated driving formation in which trucks travel closely
together which further enhances fuel efficiency by reducing
aerodynamic drag.

A. Description of the problem

• Distributed Filter: a Distributed Filter is an algorithm
that takes all the measurements of all the agents of the
fleet and fuses them together to estimate the fleet state.
Because the filter is distributed, there is not a central
node where all the informations flows, but every node
of the network will communicate with the others a local
estimate of the fleet state.

• Longitudinal Control: Longitudinal control refers to
maintaining a safe and efficient following distance be-
tween trucks within a convoy. V2V communication en-
ables trucks to share their speed intentions, allowing
them to adjust their speeds seamlessly and maintain a
consistent gap. This cooperative speed control minimizes
frequent accelerations and decelerations, further reducing
fuel consumption and enhancing safety.

• Optimal Scheduling: Optimal scheduling consists in
assigning the leading position among trucks within a
convoy. This approach ensures that the leading position,
which typically experiences increased aerodynamic drag,
is distributed among trucks efficiently. It also considers
each vehicle’s specific consumption to balance the load
of the fleet.

• Overtaking Maneuver: Overtaking maneuvers are es-
sential for implementing the optimal scheduling strategy,
allowing trucks to rotate through the leading position
efficiently. When the optimal scheduling algorithm de-
termines that a truck should take the lead, an overtaking
maneuver gets instatiated.

B. Related Work

A Distributed Extended Kalman Filter is a type of Kalman
filter that is designed to work in a distributed sensor network.
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In a distributed sensor network, there are multiple sensors that
are spread out. Each sensor has its own local measurements,
but it does not have access to all of the measurements from the
other sensors. The DEKF is able to estimate the state of the
system using only the local measurements from each sensor,
and by exchanging information with its neighboring sensors.
The DEKF algorithm has been extensively studied in literature,
with numerous research papers demonstrating its effectiveness
in various applications, including autonomous vehicle state
estimation.

CACC has been extensively researched in the context of
autonomous vehicle platooning, with numerous studies in-
vestigating various strategies for ensuring coordinated speed
adjustments among vehicles. A possible approach has been
proposed by [1] which integrates the ego measurements of the
location, with state and control informations coming from the
preceding vehicle to obtain a safe longitudinal controller.

In order for a vehicle to overtake another, it has to perform
a lane change. Among the possible algorithms, a simple, yet
effective approach is the Pure Pursuit Kinematic Controller
(PPC) [2]. PPC has been widely adopted in autonomous vehi-
cle steering due to its ability to generate smooth and efficient
steering commands. The controller relies on the vehichle’s
position estimate and calculates the steering angle needed to
reach a point through simple kinematics consideration. The
distance of the tracked point is ruled by the lookahead distance
(LD), that rules the responsiveness of the system.

II. ADOPTED MODELS

A. System model

Each vehicle is modeled with a car like kinematics model,
whose longitudinal dynamics is ruled by the third order modelṡi(t)

v̇i(t)
ȧi(t)

 =

 vi(t)
ai(t)

−1
τ ai(t) +

1
τ pi(t)

 (1)

where ai is the acceleration of vehicle i, while pi is the input to
be interpreted as desired acceleration and τ is a time constant
representing engine dynamics. This model is rather popular in
cruise control research [3].

The overall state of each vehicle is thus of dimension n = 6

Xi(t) =


xi(t)
yi(t)
δi(t)
αi(t)
vi(t)
ai(t)

 , Ẋi(t) =


cos(δi(t))vi(t)
sin(δi(t))vi(t)

tan(αi(t))/Lvi(t)
ωi(t)
ai(t)

−1
τ ai(t) +

1
τ pi(t)

 (2)

where the control actions are the steering velocity ωi(t) and
the throttle pi(t), so ui(t) =

[
pi(t) ωi(t)

]T
.

The continuous time system is discretized by means of Euler
discretization. The model is also affected by the uncertainty
ηi,k, so that the final system can be described by the nonlinear
relation

Xi,k+1 = f(Xi,k, ui,k, ηi,k) (3)

For a fleet composed by m vehicles, the whole state of
the is obtained by stacking each vehicle’s state. The order in

which the state is stacked match the initial configuration of the
vehicles in the fleet. Such state is thus of dimension n ∗m.

Xk =



x1,k

y1,k
δ1,k

...
xm,k

ym,k

δm,k


(4)

B. Communication System

The fleet is made up by intelligent vehicles equipped
with sensors and actuators to autonomously interact with the
environment (i.e. the highway). Each vehicle is also able
to communicate. The communication happens only if two
vehicles are within the communication range. The probability
of a vehicle to communicate with the others is also bounded by
Pcomm < 1, to account for non ideality. The communication
is bidirectional. When two vehicles are able to communicate
they exchange a series of information:

• Fi,k: Composite information matrix used in the consensus
protocol for DEKF

• ai,k: Composite information state used in the consensus
protocol for DEKF

• di,k: Degree of the i − th vehicle. used to reach the
average consensus

• pi,k: Control action of vehicle i, used for the prediction
step of the DEKF and for the application of CACC
algorithm

C. Measurement model

Each vehicle is equipped with a set of sensors that allows it
to estimate not only its state, but also the one of the vehicle in
front of it. Every sensor has been calibrated, while the noise
is assumed normally distributed.

smeas = strue + ϵ

ϵ ∼ N (0, σ2)
(5)

The sensor measurements are also independent. The measure-
ment model of vehicle i is definded as:

zi,k = h(Xk, ϵk) =



xi,k

yi,k
δi,k
αi,k√

(xj,k − xi,k)2 + (yj,k − yi,k)2

atan(
yj,k−yi,k

xj,k−yi,k
)− δi,k

δj,k − δi,k


+ϵk

(6)
Where the first four rows correspond to the ego measurements
of the vehicle i, while the last three are the measurements of
the preceding vehicle j, if it is within the measurement range.
The first two measurements come from the Radar, while the
last one is considered a preprocessed information coming from
the Lidar about the rotation of the vehicle in front. Table I
shows the uncertainty considered for each sensor.
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Sensor σ
GPS (x) 1e-2
GPS (y) 1e-2

Magnetometer 1e-1
Encoder on steering wheel 1e-2

Radar (ρ) 5 1e-2
Radar (ϕ) 5 1e-2

Preprocessed Lidar 1e-2

TABLE I: Sensors uncertainty

D. Consumption model

In order to describe the additional effort needed for the fleet
leader a simple linear model has been used and it is described
by the relation:

ci =

{
(βi + γi)si,L if i is leader
βisi,L̄ if i is not leader

(7)

Where c is the total consumption in L/km, the term βi is
the regular consumption due to loading conditions, engine
specification and aerodynamics drag, while γi is the additional
effort required by the leader of the fleet. The terms si,L and
si,L̄ are the distances traveled in the first, or in any other
position. Clearly the sum si,L + si,L̄ must be equal to the
overall traveling distance S of the vehicle i

III. SOLUTION

A. Schedule Optimization

The problem of finding an optimal schedule for autonomous
trucks platoon can be formulated as a Quadratic Program (QP).
To exploit this optimization strategy it is assumed that the
solution match the template shown in Figure 1.

Fig. 1: Template solution for QP

Quadratic programming finds the global optimal solution to
the problem

min
Y

1

2
Y OY T + cY

s.t.
AY = b

GY ≤ h

(8)

The job of the QP solver is to stretch and shrink the
graphs in order to obtain the minimum cost. In this case the
optimization variables Y are the distances traveled by the
vehicles in the first or in any of the other positions. O is
instead the consumption matrix, which collects all the terms
βi and γi.

Y =



s1,L
s1,L̄
s2,L
s2,L̄

...
sm,L

s,L̄


2m

(9)

O =


β1 + γ1 β1 0 0 . . .

0 0 β2 + γ2 β2 . . .
...

...
. . .

0 0 . . . βm + γm βm


mX2m

(10)
The linear constraint AX = b is needed to guarantee that

each vehicle travels the distance S. In this application the
vectors c, h and the matrix G are note used.

IV. CONTROL DESIGN

A. Distributed Extended Kalman Filter

In order to reconstruct the state of the fleet of dimension
n ∗ m DEKF has been implemented. In DEKF the nodes of
the network solve two consensus problems that allow them to
calculate average information matrix and average information
state at every iteration k. Every node of the network i then, can
calculate the state estimate X̂ at iteration k using the update
equations of the filter [4]

Mi = (P−1
i,k + Fi)

−1

X̂−
i,k+1 = f(Xi,k, Ui,k, 0̄)

X̂i,k+1 = X̂−
i,k+1 +Mi(ai − FiX̂

−
i,k+1)

Pi,k+1 = AiMiA
T
i +GiQiG

T
i

(11)

Ai =
δf(X,U, η)

δX

∣∣∣∣η=0

X=X̂−
i,k+1

G =
δf(X,U, η)

δη

∣∣∣∣η=0

X=X̂−
i,k+1

(12)
Where Fi and ai are respectively the local composite infor-
mation matrix and state, obtained by computing the average
consensus. Qi is the covariance matrix of the model uncer-
tainty. The consensus protocol is initialized at every iteration
k with:

Fi,0 = HT
i R

−1
i Hi

ai,0 = HT
i R

−1
i zi,k

(13)

Where Ri is the covariance matrix of the sensor noise and
Hi is the linearized model measurement. Note that the set
of available sensors can change with time, for example if no
ranging measurement can be made.

H =
δh(X, ϵ)

δX

∣∣∣∣ϵ=0

X=X̂−
i,k+1

(14)
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To reach the average consensus at every iteration k, 5 kk
messaging rounds are performed to reach consensus. In doing
so the Metropolis Hastings weighting has been used:

qij,k =


1

max(di,k,dj,k)+1 if i ̸= j

1−
∑m

j=1,i̸=j qij,k if i = j

0 otherwise

Fi,kk+1 = qii,kFi,kk +

mr∑
j=1,i̸=j

qij,kFj,kk

ai,kk+1 = qii,kai,kk +

mr∑
j=1,i̸=j

qij,kaj,kk

(15)

mr is the number of agents reachable by communication

B. Cooperative Adaptive Cruise Control

In order to develop a controller that stabilize the vehicles
along the string a linear feedback controller with feedforward
term has been implemented.

Consider a string of m vehicles, with di being the distance
between vehicle i and its preceding vehicle i− 1, and vi the
velocity of vehicle i. The main objective of each vehicle is to
follow its preceding vehicle at a desired distance dr,i. Here, a
constant time headway spacing policy is adopted, formulated
as

dr,i = ri + hvi(t) (16)

where h is time headway and ri a constant spacing accounting
for vehicle dimensions and stanstill safe spacing. Such a policy
is known to imporve string stability [5]. The error is thus
defined as:

ei(t) = di(t)−dr,i(t) = (si−1(t)− si(t))− ri−hvi(t) (17)

With si(t) the position along the road of vehicle i at time t.
The error state can be designed asė1,i(t)

ė2,i(t)
ė3,i(t)

 =

ei(t)
ėi(t)
ëi(t)

 (18)

From the error definition, using the third order model it follows
that:

ė3,i = −1

τ
e3,i −

1

τ
λi +

1

τ
pi−1 (19)

where λi is the new input defined as: λi = hṗi + pi. With
the knowledge of pi−1, obtained via wireless communication
between vehicles, one could choose the new control input λi in
such a way that the error converges to zero. A linear feedback
has been implemented:

λi = K

ė1,i(t)
ė2,i(t)
ė3,i(t)

+ pi−1 (20)

with K =
(
kp kd kdd

)
By choosing the control variable pi as

ṗi =
1

h
(pi + kpe1,i + kde2,i + kdde3,i + pi−1) (21)

the error converges to zero

Fig. 2: Conceptual scheme for CACC

Fig. 3: Block Diagram

C. String stability analysis

String stability in platoon control is a crucial property that
determines the overall safety and performance of autonomous
vehicle platoons. It refers to the ability of a string of vehicles
(followers) to maintain a stable and bounded spacing with
respect to a lead vehicle even in presence of disturbances
on the leading vehicle. The controller stated before, while
guaranteeing convergence of the error, does not proove string
stability. To do so it is possible to consider Γi(s) as the
Transfer function from vi−1 to vi.

To proove string stability one needs to verify that

||Γ(jω)||∞ ≤ 1 (22)

which is conceptually the same as requiring energy dissipation
along the queue of vehicles. The Transfer function of the
system can be obtained from the block scheme of Figure 3.
Here each block is described:

G(s) =
si(s)

pi(s)
=

1

s2(τs+ 1)

H(s) =
λi(s)

pi(s)
= hs+ 1

K(s) =
λi(s)

ei(s)
= kp + kds+ kdds

2

(23)

The scheme of Figure 3 considers also a time delay through
the block D(s), which can be set to 1 if no delay is considered.
Another possibility is to set D(s) to zero to obtain the standard
adaptive cruise control, without knowledge of the action of the
preceding vehicle.

Γ(s) =
1

H(s)
+

D(s) +G(s)K(s)

1 +G(s)K(s)
(24)

The communication delay plays an important role. For
D(s) = 1 the system is stable by definition, being
||Γ(jω)||∞ = supω |H−1(s)| = 1 By removing the informa-
tion about the forward vehicle’s action, such guarantee does
not hold. Figure 4 shows a comparison of |Γ(jω)|, when D(s)
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is set to one and when it is set to zero. In order to exagerate
the phenomenon the following parameters has been chosen:
τ = 0.1s, kp = 0.2, kd = 0.7, kdd = 0, h = 0.1

Fig. 4: Frequency response of vehicle i, in presence and in
absence of feedforward term pi−1

As can be seen, when using the feed forward term |Γ(jω)|
never exceeds 1, while this doesn’t hold for the second case.
It is also important to note that for larger values of h this
phenomenon is reduced.

D. Pure Pursuit Kinematic Controller

The algorithm works by selecting a target point (TP) on the
vehicle’s path that is a fixed distance ahead of the vehicle’s
current position. The vehicle then steers towards the TP. To
calculate the steering angle it relies on simple kinematics
considerations. In Figure 5 the PPC reference quantities are
shown. Since the distance from ICR to TP is the same as the
one from ICR to the robot center, it follows that γ2 = γ3,
while γ2 = 90− α, then by the law of sines

LD

sin(γ1)
=

R

sin(γ2)
(25)

and since the steering angle α is linked to the steering radius
R by the relation α = atan(L/R), the desired steering angle
can be easily obtained

Fig. 5: Pure Pursuit Controller reference diagram

V. IMPLEMENTATION DETAILS

The whole project has been carried out in simulation.
The simulator runs in python and the following details are
considered to be important for the understanding of the results.

A. Sensors Readings

As explained in section II-C each vehicle measures the
preceding one with a Radar and a Lidar. The assumption of
measuring just the one in front has been made just to consider
the line of sight of the vehicle, but in principle there would
be no problem in measuring the others. Indeed if a vehicle is
overtaking, thus occupying the other lane, it will be considered
to measure every vehicle within the Lidar range.

B. Reference Path

With regards to the lateral controller, implemented via PPC,
it is important to point out that each vehicle has an associated
path. That path is the one feeded to the PPC to calculate
the desired steering. The initial reference path is given at the
beginning of the simulation and it corresponds to the geometry
of the street. When a vehicle needs to perform a lane change,
the path is shifted by an amount equal to the street width on
the on the local y axis of the vehicle.

C. PID Controllers

As discussed, PPC provides reference steering angle, but the
kinematics model needs steering velocity. A PID controller is
thus used to find the steering velocity that tracks the reference
steering angle. The same happens for the longitudinal velocity
of the leading vehicle. The control action for longitudinal
dynamics is p, not v, this requires some sort of map from
the desired v to the control action p, to accoplish that another
PID controller has been applied

VI. RESULTS

A. CACC

Figure 6 illustrates a simulation with ten vehicles, each with
a following distance ri of 30 meters and time headaway hi

of 0.1 seconds. The vehicles travel on a road aligned with
the world x axis. The control strategy of the leading vehicles
is designed to oscillate at a frequency close to the platoon
resonance frequency, resulting in a sinusoidal control input
p0 = sin(0.36t).

Figure 7a depicts the vehicle-to-vehicle distance error in
the conventional ACC system. As observed, the error exhibits
significant oscillations, indicating instability and susceptibility
to slinky effects. This behavior poses a safety risk, as it
could lead to collisions among vehicles in the rearer positions.
In contrast, Figure 7b reveals a more stable and consistent
vehicle-to-vehicle distance error in the CACC system. This
improvement can be attributed to the incorporation of the
feedforward term pi−1, which effectively mitigates the slinky
effects and ensures smooth and coordinated vehicle operation.

Notably, the control law in Equation (20) does not directly
utilize the ranging measurements of the preceding vehicle,
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(a) s in ACC (b) s in CACC

Fig. 6: Comparison between ACC and CACC

(a) Error in ACC (b) Error in CACC

Fig. 7: Comparison between ACC and CACC errors

instead, it relies on the estimated values obtained from the
DEKF algorithm. This approach enhances the accuracy of the
measurements and contributes to the overall stability of the
platoon. Figure 8 presents the error distribution of the estimate
available to vehicle 1 about vehicle 0, with respect to the x
coordinate. Despite the nonlinear nature of the platoon dy-
namics, the DEKF algorithm effectively estimates the vehicle
position, as evident from the normal distribution of the error
around zero. This indicates that the filter provides reliable
information for the CACC control algorithm. In summary, the

Fig. 8: Error distribution of estimate available to vehicle 1

simulation results demonstrate the effectiveness of the CACC
system in mitigating slinky effects and maintaining a stable

and coordinated platoon formation. The incorporation of the
feedforward term and the utilization of the DEKF algorithm
for vehicle position estimation play a crucial role in achieving
these improvements.

B. Vehicles estimates

Figure 9 shows a the simulation of four vehicles traveling
on a 4.5 Km road. The vehicles start with the same autonomy
level and have the same fuel consumption.

(a) Path drawn by vehicles

(b) Positions along the road

Fig. 9: Simulation of four vehicles traversing a straight road

Initially, vehicle 0 leads the fleet, and the leadership position
is gradually distributed among the other vehicles. As vehicle
1 initiates an overtaking maneuver at around 120 seconds, it
switches lanes and begins to evaluate the location estimates of
the other vehicles. If the uncertainty in the predicted position
of another vehicle falls below a certain threshold, the vehicle
compares that estimate to its own. Once the vehicle’s own
position surpasses the estimated positions of the other vehicles
plus a safety margin, it initiates a lane change to become the
leader.

in doing so the vehicle relies not only on its own sensor
measurements but on the estimate obtained by fusing the
informations of all the reachable sensors. This implies that
the uncertainty on the other’s location is smaller than the
one possible by using just own measurements making the
overtaking safer

Figure 10 shows the estimates of vehicle 1, 2 and 3
available to vehicle 0. Notably, vehicle 0 never directly follows
vehicle 2, so it cannot directly measure its position. Vehicle
2’s information reaches vehicle 0 via communication. This
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Fig. 10: Vehicle 0’s estimates

explains the spikes in the uncertainty of these estimates. As
the vehicles are within communication range, the probability
of exchanging messages is ruled by Pcomm, set to 0.3 in this
simulation. This means that for most of the time, vehicle 0
relies on predictions for vehicle 2’s position, causing the uncer-
tainty to increase. When communication is re-established, the
uncertainty decreases. This explains the pattern of the graph.

The estimates of vehicle 1 are more stable. When vehicle 1
overtakes vehicle 0, it can be directly measured by vehicle 0,
causing the uncertainty to decrease. As can be seen in Figure
11 the uncertainty decreases after the overtake. However, there

Fig. 11: Uncertainty in vehicle 1 y estimate from vehicle 0

are still spikes in the estimates of vehicle 1, which can be
attributed to the increased confidence in the estimates when
the two vehicles communicate, as the DEKF algorithm fuses
data from multiple sensors.

Because the vehicles are able to communicate, when a
vehicle starts the overtaking maneuver, it informs the other
vehicles, so they can reduce their cruise velocity, allowing
for a faster maneuver. This is an important feature in real
life scenarios, where long overtaking maneuver and strong
accelerations are both undesired, especially when the platoon
is particularly long.

C. Consumption

To validate the efficacy of the proposed scheme in op-
timizing fuel consumption, a simulated scenario was de-
vised, encompassing four autonomous trucks traversing a 500-

Fig. 12: Comparison of fuel consumption with and without
rotating the leader

kilometer route, The vehicles have different fuel consumption
and experience different aerodynamics drag increase when
leading. The values of β and γ can be chosen randomly, but
for a clearer description in this simulation they are set to γ0
= 0.2 L/km, while γ of all the other vehilces is set to 0.1, β
is instead 0.3 for all the vehicles. The simulation outcomes
are shown in Figure 12 and clearly show the benefit of a
strategy that rotates the leader of the fleet in reducing the
fuel consumption. The reduction for this route is of about
10%. Another advantage which was not directly addressed,
but results from this simulation, is the similar consumption
of every vehicle. Since in this simulation they all start with
the same range, this is a desired characteristic as it reduces
the stops that the fleet needs to perform to maintain a fixed
number of trucks. This behaviour can be prioritized by adding
a cost term that minimizes the differences in the autonomy
levels in the cost function of Equation (8).

VII. CONCLUSION

The proposed scheme for autonomous truck platoons has
demonstrated its effectiveness in improving fuel efficiency
and reducing emissions. This result was expected, as there
is an obvious advantage in splitting the job among all the
trucks. The focus of this work regards how such result is
achieved. By utilizing a Distributed Extended Kalman Filter
to estimate the state of neighboring vehicles each vehicle is
able to reconstruct the geometry of the fleet, which results in
safer operations when a vehicle needs to overtake. The use
of CACC dramatically increase the safety as it eliminates the
slinky effects that may result in the collision of the last vehicles
of the fleet. CACC might also improves fuel efficiency and
road throughput by allowing a shorter spacing between the
vehicles that is possible because no slinky effect is present.
In order to rotate the leader of the fleet the vehicles need to
perform overtaking maneuver, so a lateral controller has been
implemented with PPC. Overall this project wants to show how
a fleet of vehicles could operate to reduce fuel consumption.

However, the proposed scheme has some limitations that
need to be addressed in future work. The current consump-
tion model is too simple and does not fully capture the
complexities of fuel consumption, such as the impact of
velocity, acceleration, and nonlinear effects such as the spacing
between vehicles. Additionally, the scheme assumes a static
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fleet size, which may not reflect real-world scenarios where
vehicles may join or leave the platoon. Furthermore, the lateral
controller based on pure pursuit with path shifting is not the
most optimal solution for lane changes. More advanced path
planning techniques could be employed to generate smoother
and safer paths during lane transitions. Further research is
needed to refine the consumption model, handle dynamic fleet
sizes, and optimize lane change maneuvers.
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